When Naked Became Armored: An Eight-Gene Phylogeny Reveals Monophyletic Origin of Theca in Dinoflagellates

نویسندگان

  • Russell J. S. Orr
  • Shauna A. Murray
  • Anke Stüken
  • Lesley Rhodes
  • Kjetill S. Jakobsen
چکیده

The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Phylogeny and Biogeographic History of the Armored Neotropical Catfish Subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae)

The main objectives of this study are estimate a species-dense, time-calibrated molecular phylogeny of Hypoptopomatinae, Neoplecostominae, and Otothyrinae, which together comprise a group of armoured catfishes that is widely distributed across South America, to place the origin of major clades in time and space, and to demonstrate the role of river capture on patterns of diversification in thes...

متن کامل

A phylogeny analysis on six mullet species (Teleosti: Mugillidae) using PCR-sequencing method

In this study, genetic differences and phylogenic relationships among six Mugilidae species (Mugil cephalus, M. capito, Liza subviridis, L. saliens, L. aurata, Valamugil buchanani) were determined using PCR-sequencing. M. cephalus, L. subviridis, and V. buchanani from the Persian Gulf and Oman Sea, and L. aurata and L. saliens from the Caspian Sea were col-lected. Samples of an imported, Egypt...

متن کامل

Molecular Phylogeny of the Genus Lathyrus (Fabaceae-Fabeae) Based on cpDNA matK Sequence in Iran

Background: More than 60 species of the genus Lathyrus are distributed in Southwest Asia. It is the second largest genus of the tribe Fabeae, after Vicia, in the region (and in Iran with 23 species). In the regional Flora (Flora of Turkey, FloraIranicaand flora...

متن کامل

Identification of Highly Divergent Diatom-Derived Chloroplasts in Dinoflagellates, Including a Description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae).

Dinoflagellates are known to possess chloroplasts of multiple origins derived from a red alga, a green alga, haptophytes, or diatoms. The monophyletic "dinotoms" harbor a chloroplast of diatom origin, but their chloroplasts are polyphyletic belonging to one of four genera: Chaetoceros, Cyclotella, Discostella, or Nitzschia. It has been speculated that serial replacement of diatom-derived chloro...

متن کامل

Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics.

Dinoflagellates are key species in marine environments, but they remain poorly understood in part because of their large, complex genomes, unique molecular biology, and unresolved in-group relationships. We created a taxonomically representative dataset of dinoflagellate transcriptomes and used this to infer a strongly supported phylogeny to map major morphological and molecular transitions in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012